1-well-covered Graphs Revisited

نویسندگان

  • Vadim E. Levit
  • Eugen Mandrescu
چکیده

A graph is well-covered if all its maximal independent sets are of the same size (M. D. Plummer, 1970). A well-covered graph (with at least two vertices) is 1-wellcovered if the deletion of every vertex leaves a graph which is well-covered as well (J. W. Staples, 1975). In this paper, we provide new characterizations of 1-well-covered graphs, which we further use to build 1-well-covered graphs by corona, join, and concatenation operations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Roller-Coaster Conjecture Revisited

A graph is well-covered if all its maximal independent sets are of the same cardinality [25]. If G is a well-covered graph, has at least two vertices, and G − v is well-covered for every vertex v, then G is a 1-well-covered graph [26]. We call G a λ-quasi-regularizable graph if λ · |S| ≤ |N (S)| for every independent set S of G. The independence polynomial I(G;x) is the generating function of i...

متن کامل

Well-covered graphs and factors

A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality . Plummer [Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91–98] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perfect [1, 2]-factor FG, i.e. a spa...

متن کامل

A characterisation of cubic parity graphs

A graph is Zm-well-covered if all maximal independent sets have the same cardinality modulo m. Zm-well-covered graphs generalise well-covered graphs, those in which all independent sets have the same cardinality. Z2-well-covered graphs are also called parity graphs. A characterisation of cubic well-covered graphs was given by Campbell, Ellingham and Royle. Here we extend this to a characterisat...

متن کامل

A generalization of Villarreal's result for unmixed tripartite graphs

‎In this paper we give a characterization of unmixed tripartite‎ ‎graphs under certain conditions which is a generalization of a‎ ‎result of Villarreal on bipartite graphs‎. ‎For bipartite graphs two‎ ‎different characterizations were given by Ravindra and Villarreal‎. ‎We show that these two characterizations imply each other‎.

متن کامل

Unmixed $r$-partite graphs

‎Unmixed bipartite graphs have been characterized by Ravindra and‎ ‎Villarreal independently‎. ‎Our aim in this paper is to‎ ‎characterize unmixed $r$-partite graphs under a certain condition‎, ‎which is a generalization of Villarreal's theorem on bipartite‎ ‎graphs‎. ‎Also, we give some examples and counterexamples in relevance to this subject‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.03972  شماره 

صفحات  -

تاریخ انتشار 2016